Excerpt (Louise Amoore)
‘…it is worth reflecting on what one means by ‘self learning’ in the context of algorithms. As algorithms such as deep neural nets and random forests become deployed in border controls, in one sense they do self-learn because they are exposed to a corpus of data (for example on past travel) from which they generate clusters of shared attributes. When people say that these algorithms ‘detect patterns’, this is what they mean really – that the algorithms group the data according to the presence or absence of particular features in the data.
Where we do need to be careful with the idea of ‘self learning’, though, is that this is in no sense fully autonomous. The learning involves many other interactions, for example with the humans who select or label the training data from which the algorithms learn, with others who move the threshold of the sensitivity of the algorithm (recalibrating false positives and false negatives at the border), and indeed interactions with other algorithms such as biometric models.’